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Abstract. The excitonic nonlinear optical responses due to exciton-phonon interactions in strongly coupled
exciton-phonon systems are investigated theoretically. It is shown that the influence of exciton-phonon
interactions on the nonlinear optical absorptions and Kerr nonlinear coefficients is significant as the signal
field frequency detuning from the exciton frequency approaches to the optical phonon frequency. How to
manipulate the nonlinear optical responses by using the control fields is also presented.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light; elec-
tromagnetically induced transparency and absorption – 42.50.Hz Strong-field excitation of optical tran-
sitions in quantum systems; multiphoton processes; dynamic Stark shift – 42.25.Bs Wave propagation,
transmission and absorption – 72.80.Le Polymers; organic compounds (including organic semiconductors)

1 Introduction

The control of linear and nonlinear optical properties of
a material by using resonant electromagnetic fields is be-
coming more and more important in recent years. Elec-
tromagnetically induced transparency (EIT) are excellent
technique that can be used to suppress a linear absorp-
tion of a resonant multilevel media, while keeping the
nonlinear optical properties at a very high level [1–4]. Re-
cent remarkable applications include ultraslow light pulse
propagation [5–8] and light storage [9–11]. The effects of
EIT has been used by Schmidt and Imamoglu [12] to
devise a scheme involving four level atoms which pro-
duces a giant cross-Kerr nonlinearity with no noise. Re-
cently, Kuang et al. [13] develop a fully quantum treat-
ment of EIT in three-level Λ-type atoms and find that
the atomic medium with EIT exhibits giant Kerr as well
as higher order nonlinearities. Xiao and coauthors [14]
have experimentally studied the Kerr-nonlinear index of
refraction in a three-level Λ-type atomic systems for sev-
eral coupling powers and found that the Kerr nonlinearity
is greatly enhanced because of atomic coherence in the
three-level atomic system compared with that a two-level
atomic system. Many other studies of nonlinear optical ef-
fects utilizing EIT have been published elsewhere [15–18].
On the other hand, in the recent years there has been
an increasing interest in the nonlinear optical properties
of excitons confined in low-dimensional molecular geome-
tries such as crystalline organic superlattices, molecular
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aggregates, conjugate polymers and molecular monolay-
ers [19–32]. These organic materials have many potential
applications. In particular, the ordered films of organic
conjugated polymers are of strategic relevance for novel
optoelectronic devices such as polymer LEDs [31]. In gen-
eral these organic systems are characterized by a strong
exciton-phonon interaction which often leads to large non-
linear optical phenomena. Greene et al. [20] have exper-
imentally shown that the anomalous optical nonlinearity
of polydiacetylene-toluene sulfonate (PTS) results from
phonon-mediated interactions between virtual excitons.
Liu et al. [29] in a recent paper discussed the effects of the
detuning between the cavity field and the exciton on the
radiation spectra of the high-density excitons in a quan-
tum well. More recently, Zhu and Li [30] have predicted
the occurrence of EIT due to strong exciton-phonon inter-
actions in the strongly coupled exciton-phonon systems.
In the present article, we will further investigate the in-
fluence of exciton-phonon interactions on the nonlinear
optical absorption and Kerr coefficients in these strongly
coupled exciton-phonon systems. How to manipulate the
nonlinear optical responses by using the control fields is
also discussed in detail.

2 Theory

In what follows, we consider an interacting exciton sys-
tem including the coupling of exciton-phonon and exter-
nal radiation fields. For the sake of simplicity, we only
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χ(3)(ωs) =
i(α1 − α2η(ωs))A(ωs)

{1 + i[δ0 + ∆c + (2α1 − α2)w0 − α2w0η(ωs)]}{1 + i[∆c + (α1 − α2)w0]}2
, (9)

with A(ωs) =
− i + [∆c + δ0 + (2α1 − α2)w0 − α2η(ωs)w0]

[∆c + (2α1 − α2)w0 − α2η(ωs)w0]2 − (α1 − α2η(ωs))2w2
0 + (1 + iδ0)2

, (10)

assume the existence of single phonon mode and the lin-
ear exciton-phonon interaction. It is anticipated that this
is sufficient to illustrate the main physics for the impact of
strong exciton-phonon coupling on the nonlinear optical
responses in the strongly coupled exciton-phonon systems,
although the couplings between exciton and multimode
phonons are also important. An extension of this work to
the case of the multimode phonons will be presented else-
where. Then the Hamiltonian in a rotating frame at the
control field frequency ωc reads as follows [19–21]

H = �(ωex − ωc)a+a + �ωphb+b + �βa+2a2 − �λa+aQ

− �Ω(a+ + a) − µ
(
a+Ese

−iδt + aE∗
s eiδt

)
, (1)

where �ωex and �ωph are the exciton binding and phonon
energies,respectively. β is the exciton-exciton interaction
constant assumed as a positive-real number, which means
that the biexcitons are not stable and only excitons are
presented in the systems, λ is the exciton-phonon coupling
constant, Ω = µEc/� is the Rabi frequency of the control
field, Ec is the slowly varying envelope of the control field,
µ is the electric dipole moment of the exciton, assumed to
be real, a+a and b+b are the exciton and phonon popu-
lations, respectively. Further, Q = b+ + b is the phonon
amplitude, Es is the slowly varying envelope of the signal
field, and a and b are the exciton coherence and phonon
annihilation operators, respectively. δ = ωs − ωc is the
detuning of the signal and the control field, ωs is the fre-
quency of the signal field and ωc is the frequency of the
control field. It is shown by Bosma et al. [32] that for
the strongly localized excitons in strongly coupled exciton-
phonon systems, the linear and nonlinear optical response
can be modeled according to the single exciton and its
coupling to the phonons, so the polariton effects due to
the wavevector dependence of the exciton are negligible
in this article.

The temporal evolution of the exciton coherence a and
the phonon amplitude Q are determined by the Heisenberg
equation of motion, and are given by

da

dt
= −i∆a − 2iβa+aa + iλQa + iΩ + i

µEs

�
e−iδt (2)

d2Q

dt2
+ ω2

phQ = 2ωphλa+a, (3)

where ∆ = ωex − ωc. In what follows we ignore the quan-
tum properties of a and Q [19–21], then the semiclassical

equation for a and Q will be

da

dt
= −(i∆ + Γ )a − 2iβa+aa + iλQa

+ iΩ + i
µEs

�
e−iδt (4)

d2Q

dt2
+ γph

dQ

dt
+ ω2

phQ = 2ωphλa+a, (5)

where Γ and γph are phenomenological exciton dephasing
and phonon decay rates, respectively.

In order to solve equations (4) and (5) we make the
ansatz

a(t) = a0 + a+e−iδt + a−eiδt, (6)

Q(t) = Q0 + Q+e−iδt + Q−eiδt. (7)

On substituting (6) and (7) in (4) and (5) and on working
to the lowest order in Es but to all orders in Ω, we can
obtain a− in the steady state and then yield the nonlinear
optical susceptibility as follows [33]

χ
(3)
eff (ωs) =

Nµa−
3E2

c E∗
s

=
Nµ4

3�3Γ 3
χ(3)(ωs), (8)

where N is the number density of excitons and the dimen-
sionless nonlinear optical susceptibility

see equations (9) and (10) above

where ∆c = ∆/Γ , δ0 = δ/Γ , w0 = |a0|2, α1 = 2β/Γ ,
α2 = 2λ2/(ωphΓ ), ωph0 = ωph/Γ , γph0 = γph/Γ and the
auxiliary function

η(ωs) =
ω2

ph0

ω2
ph0 − δ2

0 + iδ0γph0
. (11)

The population w0 of the exciton is determined by the
cubic equation

w0{1 + [∆c + (α1 − α2)w0]2} = Ω2
c , (12)

where Ωc = Ω/Γ . The cubic equation (12) has either
a single or three real roots. The latter case just cor-
responds to the intrinsic optical bistability which arises
from exciton-exciton interactions and exciton-phonon
interactions. From the nonlinear optical susceptibility
χ(3)(ωs) we can obtain the nonlinear optical absorptions
(Imχ(3)(ωs)) and the Kerr coefficients (Reχ(3)(ωs)) of
strongly coupled exciton-phonon systems as functions of
the detuning ∆s = (ωs − ωex)/Γ and the other parame-
ters. In our calculations very strong exciton-phonon cou-
pling is assumed, it is so strong that its effective ac-Stark
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Fig. 1. The dimensionless nonlinear optical absorption as a
function of the detuning ∆s for α1 = 0.5 and α2 = 2 (dotted
curve), α1 = 0 and α2 = 2 (full curve), α1 = 0.5 and α2 = 0
(broken curve). The parameters used are Ω2

c = 1, ∆c = 0,
ωph0 = 4 and γph0 = 0.04.

shift is comparable to the exciton linewidth, even when a
detuning equal to the phonon frequency is assumed. How-
ever, in the experiment [20] Greene et al. observed the dis-
tinct nonlinear optical spectra in polydiacetylene-toluene
sulfonate (PTS) films, although the exciton-phonon cou-
pling (λ = 0.1 eV) is so strong in this real PTS mate-
rial. Therefore in the following calculations we also choose
PTS as an example, for which ωph = 0.2 eV, λ = 0.1 eV,
γph = 2 meV, ωex = 2 eV and Γ = 50 meV [20], and
then α2 = 2, ωph0 = 4 and γph0 = 0.04. But there are
no experimental values for the exciton-exciton interac-
tion constant β, so without loss of generality we assume
α1 = 2β/Γ = 0.5.

3 Numerical results and discussion

Figures 1 and 2 show the nonlinear optical absorption
(Imχ(3)) and the Kerr coefficient (Reχ(3)), respectively, as
a function of the detuning ∆s = (ωs −ωex)/Γ for the case
Ω2

c = 1 and ∆c = 0. As the detuning of the signal field
approaches to the optical phonon frequency and exciton-
phonon interaction is considered, the nonlinear optical ab-
sorptions and Kerr coefficients are greatly enhanced (as
shown in full and dotted curves of Figs. 1 and 2). How-
ever when the exciton-phonon interactions are neglected,
the nonlinear optical responses are reduced greatly and
nearly become zero (the broken curve), so the influence
of the exciton-phonon interaction on the nonlinear optical
responses is significant in the strongly coupled exciton-
phonon systems, especially for ∆s = ωph. Figures 3 and 4
illustrate the nonlinear absorption and Kerr coefficient,
respectively, for various detunings (∆c) of the control field
from exciton frequency as a function of ∆s for Ω2

c = 1.
We see from the figures that varying the detuning of
control field from the exciton frequency, one can obtain
the different nonlinear absorptions and Kerr coefficients.

Fig. 2. The dimensionless Kerr coefficient as a function of the
detuning ∆s for α1 = 0.5 and α2 = 2 (dotted curve), α1 = 0
and α2 = 2 (full curve), α1 = 0.5 and α2 = 0 (broken curve).
The other parameters used are the same as in Figure 1.

Fig. 3. The dimensionless nonlinear optical absorption as a
function of the detuning ∆s for ∆c = 0 (full curve), ∆c = 1
(broken curve) and ∆c = −1 (dotted curve). The parameters
used are Ω2

c = 1, α1 = 0.5, α2 = 2, ωph0 = 4 and γph0 = 0.04.

Fig. 4. The dimensionless Kerr coefficient as a function of the
detuning ∆s for ∆c = 0 (full curve), ∆c = 1 (broken curve)
and ∆c = −1 (dotted curve). The other parameters used are
the same as in Figure 3.
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Fig. 5. The dimensionless nonlinear optical absorption as a
function of the detuning ∆s for Ω2

c = 1 (full curve), Ω2
c = 1.5

(dotted curve) and Ω2
c = 2 (broken curve). The parameters

used are ∆c = 0, α1 = 0.5, α2 = 2, ωph0 = 4 and γph0 = 0.04.

Fig. 6. The dimensionless Kerr coefficient as a function of the
detuning ∆s for Ω2

c = 1 (full curve), Ω2
c = 1.5 (dotted curve)

and Ω2
c = 2 (broken curve). The other parameters used are the

same as in Figure 5.

The nonlinear optical absorptions and Kerr coefficients
as a function of ∆s for different Rabi frequencies of the
control field are shown in Figures 5 and 6, respectively.
The results also present that modification of the Rabi fre-
quency of the control field can alter the nonlinear optical
absorption and Kerr coefficients significantly. As a result,
the control field can obviously manipulate the nonlinear
optical responses of the strongly coupled exciton-phonon
systems.

4 Conclusions

In summary, we have studied the excitonic nonlinear op-
tical responses due to the strong exciton-phonon inter-
actions in strongly coupled exciton-phonon systems. It is
shown that the influence of the exciton-phonon interaction

on the nonlinear optical effects is significant in the exci-
ton systems with strong exciton-phonon interactions. The
results also present that the nonlinear optical absorptions
and the Kerr coefficients are greatly enhanced as the sig-
nal field frequency detuning from the exciton frequency
approaches to the optical phonon frequency. Further we
show that the control fields can manipulate the nonlinear
optical response of the systems by tuning the frequency of
the control field from the exciton frequency or varying the
control field power. It should be noted that the phonons
are treated as a single mode in this paper, but if the spread
of phonon energies is larger than its inverse lifetime, then
this broadening must be taken into account and will sig-
nificantly reduce the nonlinear optical responses, we will
treat this case in a forthcoming paper. Finally, we hope
that this work will stimulate more theoretical and exper-
imental works which will be helpful for a better under-
standing of the strongly coupled exciton-phonon systems.
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Science Foundation (No. 03ZR14060) and the Ph.D. Training
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